So, strange things from the very start. The switch on the vent cord is rated at 15 amps. Bi-Mart only has that model in a 3-amp rating; Jerry's has a 6-amp version. The fan motor itself seems to only draw 1.1 amps, so I figured I'd be safe with the switch from Jerry's.


The duct was another thing entirely: it's stainless steel, held on with set-screws and silicone sealant, and didn't want to go back to its proper shape for any amount of squeezing, tapping or vise-gripping. Finally, I stripped off the sealant, unscrewed the screws and pulled the whole tube out. I fortunately had a piece of pipe about four inches longer, left over from a studio project, that I could use as an anvil. I slid the duct over it, suspended both ends from sawhorses, and hammered on it until it approximated round again. Rescrew, reseal, and the vent is ready to go.
For some reason, the previous owner had the kiln up on wheels. Possibly easier to position; definitely harder to load, as the casters raise up the kiln a good four inches. Fortunately, they're only bolted on, so come off easily enough.
I decided to decommission the KilnSitter entirely, which necessitates several calls to Skutt. It looks like I can just join the red, black and white wires together and cap them off, then clip the ground close to the box, but I want to be sure, so I call customer support.


They haven't got a clue either. White wire? What white wire? Also, the red and black wires don't seem to connect where the diagram says they should. I shoot them a couple of photos of the inside of the sitter and computer box, then give up for the weekend.
On Monday, we hear back with good news: He's found the relevant circuit diagram deep in their archives. This is when I find out how old this kiln really is.
It turns out I was mostly right: the red and black leads do connect. The white wire only provides power to the limit timer, so it can get cut out entirely, as can the ground. After some scary discussion about whether I should run the red wire directly to the mercury relay (mercury relay?) instead, I choose the better part of valor (i.e. cowardice) and just cut both wires, twist them together, and screw on cap.
It occurs to me as we're talking that it sounds like the explosives expert coaching the terrified civilian into defusing a bomb via long-distance. First you cut the red wire. Then disconnect the black wire from the relay and attach the red one there. Clip and cap the white…
After finishing the duct work and electrical, it's time to be a brick mason…
Well, not quite. I have most of the bricks I need to replace, neatly bundled with the kiln, although I still need to order one more down from Portland, so there's another week gone.
Replacing the brick is not that complicated. First, I have to tease out the elements from the grooves in the bricks, remembering to first pull out the element pins holding them in place. This needs to be done right-side-up, as the pins are nigh onto invisible otherwise.




Afterwards, I get Denise's help to flip the ring over, as all the broken bricks are at the bottom. I loosen the stainless steel jacket by turning the screws on a set of hose-clamps that are split in half and spot-welded to the frame. Once that's done, it's not too difficult to slide out the broken brick and slide in the replacements. Two of them aren't too badly busted, and all the pieces are here, so I stick them back together with Sairset, a high temperature kiln cement. Tighten down the jacket, thread the elements back in, and press them into their grooves with a plastic putty knife while replacing the pins. And throwing in a few extra, for good luck.


The duct was another thing entirely: it's stainless steel, held on with set-screws and silicone sealant, and didn't want to go back to its proper shape for any amount of squeezing, tapping or vise-gripping. Finally, I stripped off the sealant, unscrewed the screws and pulled the whole tube out. I fortunately had a piece of pipe about four inches longer, left over from a studio project, that I could use as an anvil. I slid the duct over it, suspended both ends from sawhorses, and hammered on it until it approximated round again. Rescrew, reseal, and the vent is ready to go.
For some reason, the previous owner had the kiln up on wheels. Possibly easier to position; definitely harder to load, as the casters raise up the kiln a good four inches. Fortunately, they're only bolted on, so come off easily enough.
I decided to decommission the KilnSitter entirely, which necessitates several calls to Skutt. It looks like I can just join the red, black and white wires together and cap them off, then clip the ground close to the box, but I want to be sure, so I call customer support.


They haven't got a clue either. White wire? What white wire? Also, the red and black wires don't seem to connect where the diagram says they should. I shoot them a couple of photos of the inside of the sitter and computer box, then give up for the weekend.
On Monday, we hear back with good news: He's found the relevant circuit diagram deep in their archives. This is when I find out how old this kiln really is.
It turns out I was mostly right: the red and black leads do connect. The white wire only provides power to the limit timer, so it can get cut out entirely, as can the ground. After some scary discussion about whether I should run the red wire directly to the mercury relay (mercury relay?) instead, I choose the better part of valor (i.e. cowardice) and just cut both wires, twist them together, and screw on cap.
It occurs to me as we're talking that it sounds like the explosives expert coaching the terrified civilian into defusing a bomb via long-distance. First you cut the red wire. Then disconnect the black wire from the relay and attach the red one there. Clip and cap the white…
After finishing the duct work and electrical, it's time to be a brick mason…
Well, not quite. I have most of the bricks I need to replace, neatly bundled with the kiln, although I still need to order one more down from Portland, so there's another week gone.
Replacing the brick is not that complicated. First, I have to tease out the elements from the grooves in the bricks, remembering to first pull out the element pins holding them in place. This needs to be done right-side-up, as the pins are nigh onto invisible otherwise.




Afterwards, I get Denise's help to flip the ring over, as all the broken bricks are at the bottom. I loosen the stainless steel jacket by turning the screws on a set of hose-clamps that are split in half and spot-welded to the frame. Once that's done, it's not too difficult to slide out the broken brick and slide in the replacements. Two of them aren't too badly busted, and all the pieces are here, so I stick them back together with Sairset, a high temperature kiln cement. Tighten down the jacket, thread the elements back in, and press them into their grooves with a plastic putty knife while replacing the pins. And throwing in a few extra, for good luck.






